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INTRODUCTION AND APPROACH

In ocean optics the forward problem (i.e., given water optical properties and
illumination conditions, find the water-leaving radiance) is solved and several computer
implementations of in-water radiative transfer are available.  Using these radiative transfer
models, water-leaving radiance can be calculated with precision limited only by the
availability of computer resources.  However, the inverse problem (i.e., given observations of
water-leaving radiance, find the water and illumination conditions that necessarily lead to this
observation) is not solved in closed analytical form.  The inverse relationship may even be
many-to-one.  Moreover solution of the inverse problem is the essence of remote sensing,
where the objective is retrieval of water depth, water inherent optical properties (IOPs),
bottom reflectance (rb), or some other parameter from observations of water-leaving spectral
radiance or reflectance.  In lieu of rigorous inversion, various empirical, semi-analytical,
statistical, or numerical methods have been utilized for retrieval of ocean parameters from
remotely sensed spectral radiance data.  Two methods in particular have received recent
attention.  The methods are similar in many ways but quite different in implementation. Both
methods have resulted in reasonable inversions of hyperspectral data.  However, the two
methods have never been applied to the same data set to allow quantitative comparisons.
This paper presents the first comparison of this type.  The methods are compared on the basis
of accuracy, efficiency, robustness, and extension to complex coastal environments.

Both methods are based on radiative transfer models.  Because the algorithms embody
physics rather than statistical relationships, one would expect that both algorithms would be
robust or universal in the sense that they would be applicable to many diverse water and
bottom types.  The first method (Lee et al., (1999, 2001) solves the inverse problem by
iteration in the forward direction.  To provide an efficient forward calculation, a simplified
forward radiative transfer model, the semi-analytical (SA) model, has been developed.  The
second algorithm uses a neural network (NN) trained using a large data set generated by
HYDROLIGHT, a full forward radiative transfer model (Mobley, 1994), to produce a
numerical inversion which takes the observed spectrum as input and generates a depth value
or IOP value as output.  Training of the NN is a global error minimization problem compared
to the SA method which applies minimization for each pixel in the image.  The SA approach
embodies physics explicitly in the equations of the SA model.  By contrast, the NN embodies
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physics implicitly by establishing numerical relationships between HYDROLIGHT
calculated spectra and HYDROLIGHT input parameters such as water column absorption
and scattering, rb, and water depth.  Since both methods use radiative transfer models, and
both use optimization/minimization, the essential difference focuses on philosophy of
implementation.

NEURAL NETWORKS

A neural network is a parallel computing architecture that can be trained by
supervised learning to perform nonlinear mappings from one vector space to another.  [See
Lippman (1987) for an introduction to neural networks, or Haykin (1994) for a more
complete treatment.]  In the present case we solve a subset of the ocean optics inverse
problem by mapping from a multi-dimensional remote sensing reflectance (Rrs) vector space
into a one-dimensional vector space representing water depth.  The processing conducted by
each processing element (or neuron) in the network consists of forming a weighted sum of
the inputs followed by a nonlinear transfer function to produce an output.  The outputs thus
produced by one layer of processing elements become the inputs to the next layer in the
network.  The “intelligence” in the network is contained in the weights that go into forming
the sum in each processing element.  The proper weight values are established by supervised
learning using a training set of input vectors where the corresponding output vector is known.
The neural network used in this study is a feed-forward, fully connected net with an input
layer, a hidden layer, and an output layer.

Supervised training is accomplished by back propagation, which iteratively presents
the spectral data as input and depth values as the corresponding desired output.  Back
propagation uses a gradient descent search technique to adjust network weights at each
iteration to minimize the mean squared error between the desired output (known depth) and
the actual network output.  The training results in a network that produces estimates of depth
given the spectrum of Rrs.  The network accuracy in general is tested utilizing an independent
set of data not included in the training process.  In this case the test set is taken from HyMaP
imagery.

NEURAL NETWORK TRAINING SET

In Situ hyperspectral absorption and beam attenuation data in the coastal waters of the
West Florida Shelf provided water optical properties for a series of HYDROLIGHT runs.
These field data were collected at approximately 50 stations ranging from very turbid waters
within Tampa Bay to clearer offshore waters.  For this paper we focus on bathymetry
retrieval over sandy bottoms, therefore, seven sand bottom types (coral sand, Biloxi sand,
White bio-turbated sediment (CoBOP), CoBOP sand, Ship island sand, Ship Is. gulf, Ship Is.
MS sound) were included in the HYDROLIGHT runs that included depths from 0 to 20
meters, wind speed from 0 to 10 m/s, and solar zenith angles from 10 to 50 degrees.
HYDROLIGHT produced Rrs data at 5 nm intervals from 402.5 to 747.5 nm (70
wavelengths).  To use this data for algorithms for specific sensors, such as the HyMaP system
used here, the HYDROLIGHT output spectra were resampled by interpolation to match the
center point of the spectral bands of the sensor of interest.  No attempt has been made to
account for HyMaP bandwidth and spectral response function.  The seventy HYDROLIGHT
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wavelengths were resampled to 21 bands corresponding to HyMaP channels falling in the
400 to 750 nm range.  The neural network training set consisted of 2118 samples.  Random
noise characteristic of the HyMaP sensor was added to the modeled data.  The training
vectors were also submitted to Principal Components Analysis (PCA) [See Davis (1986) for
an introduction] which reduced the number of bands in the imagery to four while conserving
99.85% of the total variance of the data set.
SEMI-ANALYTICAL MODEL

The semi-analytical model for shallow-water remote sensing simultaneously derives
the bottom depth and water-column properties using an optimization approach.  This
approach takes a series of algebraic equations describing the absorption and scattering effects
on the remote-sensing reflectance from the water column and optimizes using a predictor-
corrector routine to minimize an error function.  Each run in the forward direction produces a
modeled spectrum that is matched with the observed spectrum.  The error function calculates
the root mean square between the observed Rrs and the modeled Rrs in the ranges 400-675nm
and 750-830nm.  For each set of Rrs values, the optimization program computes the error
based on the five unknowns:  absorption coefficient of phytoplankton pigment at 440nm,
absorption coefficient of gelbstoff and detritus at 440nm, bottom reflectance at 550nm, water
column depth, and a scattering factor which combines the particle-backscattering coefficient,
viewing-angle information, as well as sea state.    If the error statistic is larger than some
acceptable tolerance level, the model parameters are adjusted according to the optimization
scheme and the forward model is run again.

HyMaP IMAGERY

We apply both methods to two HyMaP hyperspectral images of Ship Is., MS. The
HyMaP sensor was flown on 24 September 1999 and 11 May 2000.  HyMaP is a 126-channel
instrument covering the spectral range 450 to 2500 nm.  Signal-to-noise ratios are

Figure 1  HyMaP image of West Ship Island, MS, 24 Sept. 1999.
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500:1 or better in all channels.  Analytical Imaging and Geophysics, LLC has calibrated,
atmospherically corrected using ATREM (Goetz, et al. 1997)), geolocated the imagery, and
has converted water-leaving radiance to Rrs.  Figure 1 is a color rendition of West Ship Island
and surrounding shallows made from the HyMaP imagery (24 September 1999).  Ground
sampling distance for this imagery is 5 m.  We used only the first twenty-one HyMaP
channels that fall within the 400 to 750 nm range.  The ATREM process is intended for land
imagery and does not include a correction for skylight reflected from the sea surface.
HYDROLIGHT calculates a sky reflectance term which we subtracted from all HyMaP
spectra.  The white “+” symbols on the image mark the locations of known depths which will
serve as ground truth for comparing the methods.

RESULTS

The trained NN with four principal components of noise-corrupted-Rrs as input was
applied to the HyMaP test set to yield an overall rms error of 1.88 m.  In the Ship Is. water we
see evidence that bottom reflected light is insignificant in water deeper than 5 m.  A more
realistic statistic in this case would be to consider rms error in depth retrievals only for those
samples in the 0 to 5 m range.  In this case the rms error is reduced to 0.88 m.

As a benchmark for evaluating accuracy, we have calculated the rms error of a depth
retrieval based on the mid-point of the range.  That is, rather than use the NN or SA methods
we will estimate the depth to be 2.5 m for all samples.  In this case, which we will call the
“no skill” method the rms error is 1.10 m.  Our NN beats the no skill case.

The SA model is applied to the same test case of HyMaP spectra.  It has been shown
that the result of an optimization scheme is sensitive to the initial guess.  The initial guess for
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the iteration on each spectrum was chosen by picking characteristic samples from the test set
from the image and adjusting the initial guess with respect to these parameters.  Once a
suitable initial guess was found, it was applied to all test set spectra.   The rms error for the
SA method is 2.54 m for the entire test set and 0.99 m for depths less than 5 m.  Again, as
with the neural network the SA method is better than the no skill method but not as good as
the NN.

One way to improve the results of both methods is to supply knowledge about bottom
reflectance.  This can be done easily in this case since the beach in seen in the image.  We
have taken a pixel near the water (where the sand is believed to be wet) and found the
reflectance value at 550 nm to be 0.2.  This knowledge is input into the NN by training the
NN with a fifth input (bottom reflectance) and then fixing this input at 0.2 when processing
the test set.  The same information is supplied to the SA method by removing bottom
reflectance as a free parameter of the optimization and fixing its value as 0.2 in the model.
With bottom reflectance information added, the rms error of the NN method is reduced to
0.72 m and the rms error of the SA method increases to 4.65 m.  Figures 2 and 4 show the
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    Figure 4       Figure 5

scatter plots of the SA model test set error without and with a fixed bottom reflectance,
respectively.  Figure 3 shows the scatter plot of the test set error for the NN.  With regards to
the results of Figure 4, we may attempt to improve the SA performance by introducing a
“confidence parameter” to disregard those SA depths that do not have a significant
contribution from the ocean bottom or that have some internal inconsistency in the solution.
The use of such a parameter may limit the occurrence of outliers noticed in Figure 4;
however, it also eliminates many samples where significant bottom reflectance actually
occurred.  Figure 5 shows the results of excluding low confidence depth retrievals (30% of all
test samples excluded including 21% of samples of 0-5m depth).
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SUMMARY AND DISCUSSION

The table below provides a summary comparison of the NN and SA methods.
FACTOR NEURAL NETWORK SEMI-ANALYTICAL

RTE Model HYDROLIGHT Up to 6 parameters (depth, bottom
reflectance, absorption of gelbstoff,
absorption of chlorophyll, a
scattering term, and a spectral bias
term)

Data Requirements for
Algorithm Development

1)Hyperspectral in situ observations of
IOPs and bottom reflectance
2)Large number (several thousand) of
HYDROLIGHT files for a training set

None.

Potential Optical
Complexity

Unlimited, can include fluorescence,
Raman scattering, various scattering
phase functions, etc.

Restricted by simplified model and
by optimization speed and stability
when number of parameters is large.

Ancillary Data Required for
Algorithm Application

None. Few estimates of depth, IOPs, and/or
bottom reflectance are helpful for an
optimization first guess.  Solution
shows dependency on first guess.

Parameter Optimized Error in parameter retrieved (depth in
this case)

Error in Rrs spectrum

Internal confidence measure No. Yes.
Parameters Retrieved The one parameter NN is trained to

retrieve.
All model parameters retrieved
simultaneously.

Preprocessing of Image Data NN approach uses PCA to decorrelate
and reduce number of spectral bands.

None.

Accuracy of Depth Retrieval
On HyMaP Test Images rms = 0.72 m (0-5m depth, rb known)

rms = 4.65 m (0-5m depth, rb

known)
rms = 0.42 m (0-3m depth, rb known,
confidence threshold applied)

Although each method has its strengths and weakness as summarized in the table, in
terms of accuracy of depth retrieval, the NN method has done significantly better for this data
set unless a confidence filter has been used to discard many SA retrievals.  What would
explain this result?  Errors in instrument calibration or atmospheric correction would degrade
SA performance.  However, these factors would also degrade NN performance and would not
explain the accuracy difference unless the SA was much more sensitive to these factors than a
more forgiving NN.  Also one might suspect that there are water constituents in the
Mississippi Sound that are not included in the SA model.  It is possible that a more complex
SA model allowing for additional water constituents would do better, although as the number
of parameters in the SA model increases, convergence time and stability are expected to
become problems.  An examination of the spectral distribution of error in the SA model
might help identify any missing constituents in the SA model.  We also may have made poor
initial guesses in optimization leading to less than optimal retrievals; however, observed
variations with initial guess may be addressed with the use of the confidence term. An
AVIRIS data set, on which the SA method has performed well in the past, will also be
included in future studies to rule out the possibility that some problem might exist with the
HyMaP data that is causing problems for the SA method. These factors are the topic of on
going research which will lead to a more complete understanding of the characteristics of
these methods.
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